
Semantic presuppositions in logical syntax

Yaroslav Kokhan

Institute of Philosophy
National Academy of Sciences of Ukraine
Triokhsviatytelska str. 4, 01001, Kyiv, Ukraine

yarkaen@gmail.com

ABSTRACT. There are two implicit semantic postulates underlying modern predicate logic. Hence
predicate logic is not semantically neutral. The author proposes to take semantically neutral
languages, which have no predicate categorial structure but replace the notion of predicate with
general notion of function. Some function calculi for different semantics are demonstrated.

KEYWORDS: the standard semantics, non-standard semantics, predicate logic, function logic,
choice function.

DOI:10.3166/JANCL.22.41–56 © 2012 Lavoisier, Paris

Journal of Applied Non-Classical Logic – No. 1/2012, pages 41–56



42 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

The point of view on logical syntax shared by many logicians consists in that
logical syntax could be entirely separated from semantics so that it is possible to build
and consider any of syntactical objects — formulas, inferences, calculi, theories —
without any referring to semantics. To refute the standpoint described is the aim of
the article.

1. Presuppositions and the standard semantics

As a matter of fact, falsity of the view described is obvious. Indeed, all contem-
porary formal languages contain individual designators — constants and variables —
i.e. designators for particular individuals. These symbols are introduced immediately
as linguistic expressions, which have one and only one semantical value-denotatum.
Thus, introducing them in syntax referring to semantics is already presupposed. At
present moment the author has revealed two semantic postulates implicitly accepted
in modern logical syntax. Here they are:

(I) All proper names are single-valued, i.e. each of them could have only one se-
mantical value-interpretant (no more and no less);

(II) Interpretants of linguistic expressions are denotata of these expressions, not
their senses.

Postulate (II) could be formulated another way: interpretation relation or relation be-
tween expression t and its interpretant τ is semantic relation of denoting (t denotes an
object τ ), but not relation of expressing (t expresses a sense τ ).

Important consequences follow from these two postulates. Particularly, from (I)
follows

(III) Equality is meaningful only for single-valued names.

Indeed, contraposition to (I) says that there are no non-single valued names of objects.
But where equality asserts that two names of objects have the same denotation, this
exactly means that non-single valued expressions cannot appear in equality expres-
sion.

The consequence of (II) is no less principal:

(IV) Existence is a quantifier, not a predicate.

Indeed, as Frege shows in “Dialogue with Pünjer”, to be and to exist for denotata is the
same. So when we reject a universal proposition “all x have property F (x)”, thereby
we say that there is an individual without this property or, what is the same, that such
an individual exists i.e. we assert that there is (= exists) x without property F (x).

Semantics based on the postulates (I) and (II), will be called the standard se-
mantics below. Thereby, rejection of one or both of these postulates entails different
non-standard semantics.



Semantic presuppositions in logical syntax 43

2. Restrictions of the standard semantics

Although the standard semantics is implicitly accepted in all contemporary logic,
its application area is much more narrow and does not cover even classical mathemat-
ical logic. It is evident at least concerning its first postulate. Indeed, this postulate
denies existence of non-single valued names for objects, meanwhile such names do
exist and regularly appear in logic as functional terms and descriptions. For exam-
ple, if a is a proper name and f(x) is a partial function expression, then f(a) may
well be an empty name; from the other hand, all η-terms and ε-terms are non-single
valued by definition. Implicit acceptance of the postulate (I) makes operation with
such expressions tangibly more difficult. So, for functional terms, if partial functions
are admitted, we are forced to introduce in addition to “ordinary” equality so called
conditional equality for not more than single-valued names (this does not cover many-
valued names), or to introduce in metalanguage an additional condition, which equate
all empty names, what is not always acceptable.

Let us consider the next example. Suppose given two models of the same signature
that differ only in one aspect: domain of the first model consists of residents of some
city in the year k, when domain of another model consists of residents of that very city
in the year n with respect to the same calendar, and n > k. Suppose then the signature
contains the names not only for alive people, but also for dead, and individuals a and
b belong to the first model, but in the second model both names ‘a’ and ‘b’ being
empty, since individuals a and b have died in the year m, where k < m < n. In this
case, in the first model we’ll have true sentence ‘a 6= b’ and false sentence ‘a = b’.
But trying to define truth values for both sentences in the second model we could come
across substantial difficulties. Indeed, one and only one of them should be true, as it
follows from the notions of equality and negation. But how a sentence, which includes
an empty name, could be true? Evidently, this question goes beyond the limits of the
standard semantics, that is why there is no satisfying solution till this moment. Mostly
it is stated the sentences that include empty names are false or meaningless. Both of
these answers, standard for logicians, are clearly inadequate to our model example: if
two individuals die, any statement about them not become meaningless by this reason,
particularly, the statements whether they were different people or the same person stay
meaningful. Therefore, the sentences considered cannot be meaningless. But they
both also cannot be false in the second model, because they contradict each other. So,
we have to accept such semantics that would allow us to determine which of these
sentences is true. There are at least two ways to resolve the empty names problem
suggested in logic. The well-known method by Gottlob Frege, according to which,
all empty names in a given formal language are given common denotation, being an
arbitrary individual. This method clearly fails with respect to our example: if a and
b were different people during their life, they cannot become the same person after
their death; so one should not assign one value to all empty names. Another method,
proposed by R. Martin, seems not to be widely discussed. It consists in introducing
for every model so called “empty individual” singled out among any individuals like
null among numbers; the empty individual should be assigned to empty names as



44 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

their denotatum. However, this method does not work with our example for the same
reasons as in the previous case (different people after their death cannot become equal
and became some “null person”).

The obvious fallacy of both the methods does not depend on whether there is equal-
ity in our object language — it is enough for it to have a negation. Indeed, it is always
possible to build model like in our example, in the way it will have predicates determi-
nating designated individuals a and b. Suppose predicates F (x) and G(x, y) belong
to the signature of both models, so that these sentences: F (a), ¬F (b), G(a, b) and
¬G(b,a) are true in the first model. In this case their truth values should not change
in the second model as well as truth values of negations of all these sentences. For
example, F (x) can mean “to have the daughter called Ada”, and G(x, y) — “x is
older then y”; it is clear, that these facts does not depend on that, whether they are
stated about dead or alive people, so G(a, b) should be true and its negation ¬G(a, b)
should be false, regardless to whether names ‘a’ and ‘b’ have values-interpretants.

As for the descriptions as a kind of names the situation is even worse, because there
is no general method of operating with them. R. Carnap in “Meaning and necessity”
describes five (though says about three) methods to interpret definite descriptions in
case when they prove to be empty. A common feature of all these well-known methods
is that they do not follow from any general theory, but are ad hoc propositions. Carnap
himself frankly recognizes the last fact, stating that no one of these methods is a true
or a false theory but they are just more or less convenient instruments. Let us remind
all of them.

Frege by his first method (he proposed two one) assigns the special class of indi-
viduals to every non-single valued description as its denotatum, namely, the class of
individuals such that the predicate being the matrix of description holds for these in-
dividuals. Thus, it is proposed to consider the class of all kings of France in 1905 (an
empty class in this case) as the value of the description “the king of France in 1905”.
Formally, this method is invulnerable, but in case of empirical descriptions it is out
of synch with intuition. For example, when at the funeral feast one says that “the de-
parted man (or woman) was a merciful person”, it means one and only one individual
(which does not exist now, so term “the departed” is an empty description) but not the
class of all departed men over the Earth to the moment of that funeral feast.

Another Frege’s method was described above for the general case of proper names:
to assign the same denotatum (it does not matter, what) to all empty descriptions. This
method we have already discussed.

Matrin’s method, which could be taken as a modification of the second Frege’s
method, also has been discussed above.

Russell’s method provides that any formula that includes a definite description also
implicitly includes a statement about the single-valuedness of that description, i.e. it
looks like a conjunction of the formula itself and such statement. This method has two



Semantic presuppositions in logical syntax 45

disadvantages: firstly, descriptions cease to be a kind of proper names in the sense that
the laws of quantification, particularly the axiom

∀xF (x)→ F (a), (1)

do not hold for them (compare with section 4); secondly, negation of every formula
with description can be interpreted in two different ways, where in general case it is
impossible to choose the right one.

Gilbert-Bernaise’s method allows only those descriptions for which their single-
valuedness is proven. But in this case the formation rules lose their definiteness: we
do not know whether any sentence with description is well formed until we prove the
single-valuedness of that description.

As we can see, all known methods of operating with empty names do not work
in the sphere of empirical descriptions. Similarly there are no plausible method for
many-valued names. There is a wide class of ambiguous names, not expressed in
formal languages neither by functional terms nor by descriptive terms in their modern
form, but they are widespread in natural languages; these are proper names of people,
geographical and political placenames. Really, there has been more than one person
on this planet, named “Karl Marx”, there are more than one inhabited locality named
“Odessa”, at least two rivers named “Angara” etc. If such names were single-valued,
it could be possible to introduce for every one of them the description ιx(x = a),
where a is a required name.

But what to do with many-valued (and also with empty) names? Formally, it is
possible to hold, that “Karl Marx” and “Angara” are names of properties and by this
reason consider the description has a form εxF (x), but it is counterintuitive. No sane
person would agree that “Karl Marx” is not a name of a person but a name of some
property of this person. It should be namely the name of an individual. But such
names are forbidden in the standard semantics, and, as we have seen above, all the
tries to overcome the bounds of this semantics and to create a theory for ambiguous
names have not been successful.

3. Non-standard semantics according to the first postulate

As we ascertained above on our model example, the standard semantics sometimes
is inadequate and should be replaced by some other semantics. So it is important to
conceive, how many alternatives for the standard semantics there are and what they
are. Such alternatives are formed by rejection of one or both postulates of the standard
semantics.

Firstly, let us reject the first postulate. In this case we have no limitation on the
number of semantic values for proper names, so all the names should be classified
somehow. It is natural to classify names in three groups: empty (with no interpre-
tants), single-valued (with only one interpretant) and many-valued (with more than
one interpretant). It is easy to classify all the semantics according to this triple di-



46 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

vision, in dependence on what kinds of noted types of names they allow. Generally,
there are seven different types of semantics:

Table 1. Types of semantics

1 2 3 4 5 6 7
Empty names + + + + – – –
Single-valued names + + – – + + –
Many-valued names + – + – + – +

The case 6 here is the class of semantics that are standard according to the first postu-
late (the very standard semantics is among them). The classes represented are unequal:
thus, semantics of the class 4 are obviously very specific (they are useful perhaps only
for depicting the myths, tales and literary characters), when semantics of the class 1
seems to be the most interesting, as they and only they provide the fully valid operation
with descriptions.

Two fundamental questions arise here: what formal languages and what calculi
meet the requirements of different classes of semantics from the Table 1? We have
already seen that modern logic has no satisfactory theory to describe semantics of all
the classes excepting the class 6. Now we are going to show that this is not a historical
contingency but a necessary consequence of construction of modern logical systems.

Evidently, from the postulate (I) of the standard semantics it follows that

(V) Proper names are non-empty;

This consequence can be expressed by the formula:

F (a)→ ∃xF (x). (2)

Indeed, it is enough to take a predicate “to have the name c” as F (x). But for-
mula (2) easily follows from (1), which is an axiom in all the calculi with quantifiers
(for unknown reasons, textbook authors often ignore this consequence taking (2) as an
additional axiom, although the required proof was given by Frege in Begriffsschrift).
This means that to these days the laws of logic were chosen in a way that proper
names remain non-empty, which is a necessary condition for holding the postulate (I).
And this means that modern systems of logic are not able to describe semantics of the
classes 1–4 from the Table 1). As for description of many-valued names (semantics
of the classes 1, 3, 5, 7), in modern formal languages there are only indefinite de-
scriptions, but operating with them meets the non-emptiness problem as it was shown
above. Hence, we need logical systems without axiom (1) to describe non-standard
semantics. But how it can be substituted if that axiom describes the properties of
quantifiers? The author does not know formulation that can be substituted for the ax-
iom (1) without violating the postulate (II) of the standard semantics. It looks like
such formulation does not exist at all. But if so, there exist some “forbidden zones”
in modern logic within the limits of which it could be described nothing. This is
a rather unpleasant concequence, since it reveals non-universality of modern logical



Semantic presuppositions in logical syntax 47

description tools. The reason of this non-universality is the semantical loading: con-
temporary logical languages and calculi are not semantically neutral because they
are constructed holding over the semantical postulates (I) and (II) and as a result they
cannot describe all semantics.

As a matter of fact, there is a universal method to develop logical languages and
calculi that are able to describe semantics of any class. However this method stipulates
the changes of the categorical apparatus of logic and building formal languages on
principles quite different from the commonly used.

4. Function languages

Categorical system of contemporary logic, on the basis of which formal languages
are formulated, is grounded on division of all the non-logical objects of investigation
into objects (individuals) and predicates. Respectively, in formal languages there ap-
pear notations — as basic — for these two types of objects: individual expressions
i.e. terms are divided in two groups — individual constants (proper names, individual
symbols) and individual variables; and predicate expressions are divided into predicate
constants and predicate variables. Sometimes the notion of term needs to be extended
if expressions for functions are introduced into language: then functional expressions
together with terms constitute a quasiterm class. Note that function is more general
category than predicate: the predicates are only a kind of functions, namely a kind of
truth-value or propositional functions (logical operations also belong to both). Nev-
ertheless, function is not a basic logical category, unlike predicate, and the most of
contemporary formal languages can be called the predicate languages.

The bounds of this article do not allow to explain completely the connections be-
tween described categories and semantics, so we represent only the conclusion (which
is clarified below): in order to constitute semantically neutral languages, it is neces-
sary to refuse from predicate as a basic logical category. Predicates should be rejected
and replaced with functions. It has not been done until this moment, because the
modern notion of function is too narrow with respect to expressive power of formal
languages. For every n-ary function f (n)(x1, . . . , xn) there is the n+ 1-ary predicate
F (n+1)(x0, x1, . . . , xn) such that for any a0, a1, . . . , an from any model an equation

a0 = f (n)(a1, . . . , an) (3)

implies a proposition
F (n+1)(a0, a1, . . . , an), (4)

but not for every n + 1-ary predicate there is the n-ary function such that (4) implies
(3). The reason of this is quite simple: for any given set a1, . . . , an of arguments of
function f there can be only one value a0 of this function, meanwhile an arbitrary
predicate F can be not single-valued for any of its arguments. The situation that
appears can be called the predicate-function paradox: whether predicates are just a
kind of functions, the expressive abilities of predicate atoms appear more rich than
expressive tools of propositional atoms, constituted by functions.



48 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

But we could extend the notion of function so that function expressive abilities ex-
ceed expressive abilities of predicates and the predicate-function paradox would disap-
pear. Functions, in the modern sense of the term, are maps. To eliminate the predicate-
function paradox, they should be reinterpreted as partial multimaps, i.e. functions that
(i) can have arbitrary number of values, including different number of values for dif-
ferent sets of arguments, and (ii) can have no arguments at all. Since these functions
are ambiguous as functions, the relation between function value and the function itself
with given arguments (if there are any) cannot be an equality. However, the required
relation is somewhat a generalization of equality relation, because it differs from the
last only by that it associates a univocaly given object, which is the function value,
with, generally speaking, equivocaly given object, which is the function with given
(fixed) arguments (if there are any for this function), because it assigns its every value
the same way. On this ground, let us mark the required relation with the sign of ap-
proximate equality ‘≈’, because it has no established terminological use in modern
logic. This relation ≈ we’ll call the representation proceeding from the fact that an
ambiguous function value is not generated but only represented by it.

After the generalization mentioned of the notion of function we immediately no-
tice, that now for any n+ 1-ary predicate F (n+1)(x0, x1, . . . , xn) there can be found
the n-ary function f (n)(x1, . . . , xn) such that for any a0, a1, . . . , an from any given
model formula (4) implies

a0 ≈ f (n)(a1, . . . , an). (5)

Particularly, in any model for every 1-ary predicate F (1)(x) there is the 0-ary function
f (0) such that for any a a predicate atom F (1)(a) implies a function atom a ≈ f (0).
And this means that using functions in this new extended sense makes possible to ex-
press everything whatever is possible to express with predicates. Combining formulas
of type (5) with propositional and quantification technique, we receive systems that
are highly competitive with familiar predicate systems. But now they are function
systems.

Introduction the representation relation as a basic category of logic among cate-
gory of individual and generalized category of function (predicates we have rejected)
changes radically the form of propositional atoms of formal languages: this time there
will be formulas not of kind (4), but formulas

s ≈ t, (6)

which will be called representation formulas and read from left to right as “s is a
value (one of the values, if there are any at all) of a function t” or “s is a t-individual
(an individual of kind of t)”. We call the formal languages with atoms of form (6)
the function languages (to distinguish them from modern predicate languages). In
formation rules for the function languages it should be noted that an atomic formula
is a line ‘s ≈ t’, when s is a term and t is a quasiterm.



Semantic presuppositions in logical syntax 49

Equality is a partial case of representation (formula (6) expresses equality when t
is a term), so it is defined in function languages — unlike predicate languages. But
we are forced to define equality and inequality separately. Be

s = t ≡
Df

s ≈ t ∧ (r ≈ t→ (u ≈ t→ r ≈ u)), (7)

s 6= t ≡
Df
¬(s ≈ t) ∧ (r ≈ t→ (u ≈ t→ r ≈ u)). (8)

Function languages and calculi unlike predicate ones are semantically neutral. So
it is possible to develop calculi in function languages for any semantics. Let us start
with the standard semantics. We will use first order predicate calculus with equality
P=F1 as exemplar (symbolism is explained in the next section); we assume the P=F1

contains propositional calculus P, has two lists of variables (free and bound variables
differ), axioms (not schemata) and rules of substitution. Now we can build calculus,
which is an exact clone of P=F1 and has the standard semantics, so we will denote
it by ISF1. Alphabets of the both calculi differ only by predicate and function let-
ters (we use F,G,H and f, g, h respectively) and sign for representation. Formation
rules are analogous in both calculi except the definition of atomic formulas: in P=F1

atomic formulas have a form u = w or Pi(u1, . . . , un), where P ∈ {F,G,H} and
u, u1, . . . , un, w are free individual variables, meantime in ISF1 atomic formulas have
a form u ≈ w or u ≈ pi(u1, . . . , un), where p ∈ {f, g, h}; formulas with equality
are defined in ISF1 by (7), (8). Axioms of both mentioned calculi are in Table 2.

Table 2. Logical axioms in the standard semantics

P=F1 ISF1

(aP) ∀xF (x)→ F (a) (aI) ∀x (x ≈ f)→ a ≈ f
(bP) a = a (bI) a ≈ a
(cP) a = b→ (F (a)→ F (b)) (cI) a ≈ b→ (a ≈ f → b ≈ f)

Formulas (aP), (aI) are axioms of quantifiers, (bP) and (cP) are axioms of equality,
(bI) and (cI) are axioms of representation. The existential quantifier is defined in the
both calculi.

Non-standard semantics involve non-single valued terms, so to build calculi for
them, we should introduce into syntax the class of special logical choice functions. If
we use generalized functions, it is necessary to have a possibility to denote particular
values of an ambiguous function via expression for this function. As any function with
fixed arguments (or without arguments) does not determinate its values, an additional
logical function is required in order to choose one of the values of an ambiguous
function and represent it. In other words we have to introduce notations for choice
functions into logical syntax; in this case a concrete value (if any exists) of any func-
tion f , which is selected by a choice function, is a semantical value (interpretant) of
the term formed by application of a choice function expression to the expression for
the function f as argument. More precisely, given language L, we treat any choice



50 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

function as a partial map ch: t × I→ M, where t ⊂ L is the set of quasiterms of the
language L, I is a set of indices, and M is the domain of the principal interpretation
of L. Practically we need only denumerable set of indices, so we can take words ′, ′′,
. . . ,<n>, . . . of L as indices (L must contain symbol ‘′’) and use naturals to sign them.
We denote value of choice function in L by ch(t, i) or by chi(t) or even by ti, where
i ∈ I. If t is f (n)(x1, . . . , xn), let ti be ‘f i(n)(x1, . . . , xn)’. If function f is a partial
map or a map, let us denote it’s single value by ‘f0’. We say that any quasiterm of
form ti is a marked quasiterm. It is clear, that for every proper name a and every i is
true, that the marked term ai is equal to unmarked term a and (ai)j is equal to ai.

Choice functions as well as interpretation maps in the standard model theory are
semantic interpretation functions. Thus every context in a fixed language L, for exam-
ple a calculus or a theory, can be related with only one choice function. Logical laws
don’t depend on interpretation, so any calculus with language L can be related with
an arbitrary choice function that can be used with L; hence we don’t need to define
choice function, which we use, anyway.

Introduction of the choice functions allows us to describe various objects with the
same name within one context. For example, sentence “That dog attacked another
dog” can be formalized as ‘dog1 ≈ attack (dog2)’; additionally we can assert in this
case that ¬(dog1 ≈ dog2). Using languages with symbolism for a choice function we
even do not need to introduce individual designations, because marked quasiterms of
a form f i can play their role, where ‘f ’ is a name for a 0-ary function. In particular,
marked quasiterms can be quantified as it happens in natural language, so we can
formalize sentences of human speech literally in the simplest cases. For example,
sentence “all stars are shining” can be formalized as ‘∀s2(s2 ≈ sh)’ where ‘s’
signs the 0-ary function “star”, ‘sh’ signs the 0-ary function “shining”. Thus we have
to determinate free and bound marked quasiterms or free and bound occurrences of
the marked quasiterms; for this purpose we accept next convention: free occurrences
of the marked quasiterms in formal expressions are tagged only by odd indices of the
choice functions but bound ones only by even.

Let us build as example the calculus Id1F1 for semantics of the class 1 with the
postulate (II). This is the most interesting and important semantics because it involves
names with any number of values. So, the corresponding calculus Id1F1 can be treated
as the most important function calculus.

Alphabet A(Id1F1) = {A,B,C, f, g, h,¬,→,≈,=,∀,∃,′ , (, )}. Here ‘A’, ‘B’,
‘C’ are propositional letters, ‘f ’, ‘g’, ‘h’ are function letters; other signs treated
as usual.

Metaalphabet includes signs ‘s’, ‘t’, ‘r’ for quasiterms and signs ‘F’, ‘G’, ‘H’ for
quasiformulas.

Language L(Id1F1) is the set of all words (i.e. lines of letters) in the alphabet
A(Id1F1) including empty word Λ.



Semantic presuppositions in logical syntax 51

Variables: propositional variables are the words of a form U<m>, where U is a
propositional letter and <m> is a word in the alphabet {′}; function variables are the
words of a form p<n>p<m>, where p is a function letter and <n>, <m> are words
in the alphabet {′} (n means arity of a function variable). We sign the words in the
alphabet {′} by naturals and write Um and p(n)

m instead of U<m> and p<n>p<m>;
also we can omit an index of arity and write pm.

Quasiterms: (qt0) the words of a form pΛp<m> or p<n>p<m>t1, . . . , tn, where
<n> is non-empty, are unmarked quasiterms; (qt1) if s is an unmarked quasiterm
containing function letter p, then p<i>s is a marked quasiterm, where <i> is
a non-empty word in the alphabet {′} (i means an index of a choice function);
(qt2) the unmarked and the marked quasiterms are quasiterms. As above we write
p
i(0)
m or pim and p

i(n)
m (t1, . . . , tn) or pim(t1, . . . , tn) instead of p<i>pΛp<m> and

p<i>p<n>p<m>t1, . . . , tn; also for a quasiterm with index i of a choice function
we can sign it as si or ti or ri.

Terms are quasiterms containing only odd indices of a choice function.

Atomic quasiformulas: (qf0) propositional variables are atomic quasiformulas;
(qf1) if s is a marked quasiterm and t is a quasiterm, then s ≈ t is an atomic
quasiformula.

Quasiformulas: (f0) the atomic quasiformulas are quasiformulas; (f1) if F is
a quasiformula, then ¬F is a quasiformula; (f2) if F,G are quasiformulas, then
(F → G) is a quasiformula; (f3) if F(si) is a quasiformula containing a term si, then
∀si+1F(si+1) is a quasiformula. As in predicate logic we say that in the last quasifor-
mula first occurrence of a quasiterm si+1 is an occurrence in a quantifier but second
occurrence of si+1 is an occurrence in the range of a quantifier; such occurrences of
quasiterms are bound, all another occurrences are free.

Formulas are quasiformulas that contain (occurencies of) any marked quasiterm
that is not a term only in some quantifier or in the range of that quantifier (in other
words, contain no free occurrences of marked quasiterms that are not terms).

Axioms:

(ad1) ∀ f2(f2 ≈ g)→ f1 ≈ g,

(bd1) f1 ≈ f1,

(cd1) f1 ≈ g1 → (f1 ≈ h→ g1 ≈ h),

(dd1) f1 ≈ g1 → f1 ≈ g,

(ed1) ∃ g2(f1 ≈ g2)→ f1 ≈ g,

(fd1) ∃h2(h2 ≈ f1)→ (f1 ≈ g → ∃ f2(f2 ≈ g)),

(gd1) ∀ f2(f2 ≈ g)→ ¬ ∃ f2¬(f2 ≈ g).

In addition, axioms of propositional logic and definitions (7), (8) are introduced. Here
(ad1) is the axiom of universal quantifier, (bd1) – (dd1) are axioms of representation,



52 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

(ed1), (fd1) are axioms of existential quantifier and axiom (gd1) relates both quanti-
fiers.

Rules of transformation includes one rule of inference — modus ponens, two rules
of quantification:

(α) G→ F(f i) ` G→ ∀f i+1F(f i+1),

(β) ∃hj(hj ≈ f i)→ (F(f i)→ G) ` ∃f i+1F(f i+1)→ G,

where j is even but i is odd, and three rules of replacement:

Propositional substitution SG
AF(A) : F(A) ` F(G),

Replacement of an index of a choice function Rj
iF(si) : F(si) ` F(sj), where i, j

both are odd or both are even, and

Quasiterm replacement St
sF(s) : F(s) ` F(t), where t is a term if s is a term or an

unmarked quasiterm, and t is a marked quasiterm if s is a marked quasiterm.

If we want to add individual designations (i.e. single-valued terms) to this calculus,
we should add in it individual’s letters a, b, c, x, y, z, extent the notions of atomic
quasiformula and formula, then add the next two axioms:

(gI) ¬∀x(x ≈ g)→ ∃x¬(x ≈ g),

(hI) ∃x(x ≈ a),

and add the rules of substitution and replacement of the individual variables; the author
denotes this new calculus by Id1

I F1.

Different semantics cause different sets of logical laws. In particular, in semantics
of classes 1–4, which involve empty names, quantifiers are not dual to each other, so
formula

¬∀f2(f2 ≈ g)↔ ∃f2¬(f2 ≈ g)

here is not a logical law (indeed, the set of f -individuals can be empty for some
f ). Hence quantifiers are not defined one by another, so they must be introduced
separately and described with the different axioms (see above axioms of types (a)
and (f )). Additionally we set an axiom of type (g) describing relation between both
quantifiers; if calculus contains individual notations, we need one more axiom (gI),
which together with the axiom of type (g) guarantees the duality of quantifiers under
individual variables. Because of absence of the duality in semantics of classes 1–4 the
rule (β) does not have a form

F(f1)→ G ` ∃f2F(f2)→ G,

which it have in predicate logic, but get an additional existential antecedent (see
above).

In semantics of classes 5–7, where there’s no empty names, situation is more much
regular: here quantifiers are mutually dual as well as they are dual in predicate calculi.



Semantic presuppositions in logical syntax 53

So, they defined one by another and we don’t need an axiom of types (f ) and (g) but
obtain the theorem

f1 ≈ g → ∃f2(f2 ≈ g),

which is completely analogous to the theorem (2) from predicate logic.

Let us make two important remarks on the functional syntax. The first of these
concerns predicates. There is no separate category of predicate in function languages,
but the predicates are present here as propositional functions. Just, every n-ary func-
tion f , whose first arguments are g1-individuals, . . . , n-th ones are gn-individuals, and
the values are g0-individuals, defined by expression

f (n)(g2
1 , . . . , g

2
n); (9)

analogous expression
g2

0 ≈ f (n)(g2
1 , . . . , g

2
n) (10)

define the n + 1-ary predicate as be a propositional form in the sense of A. Church,
hense denotes the propositional function. The case of 0-ary function f is the same. If
g0, . . . , gn are the same function g, then (9) and (10) become f (n)(g2, . . . , g2n) and
g2 ≈ f (n)(g4, . . . , g2(n+1)) respectively.

The second remark concerns descriptions. We have already some of them: these
will be function expressions of the form f i(n)(g1

1 , . . . , g
2n−1
n ) as n > 0. But we

can introduce even descriptions of the general form into function languages; these
are indefinite descriptions analogous to ε-descriptions from predicate languages. Not
discussing details, the result is given. Description from a point of view of the function
logical system is an unary function with propositional function as the only argument.
In other words description “f -individual such that satisfy constraint F” will be written
as

f1(F(f1)),

in particular, “f -individual such that have property g” be written as ‘f1(f1 ≈ g)’. As
far as one can judge, if one extends a function language with descriptive quasiterms, it
needs no additional axiom, because descriptions behave themselves as ordinary gen-
eral names. Thus any problems with treatment of descriptions shouldn’t emerge.

5. Non-standard semantics according to the second postulate

If the refusal of the first postulate of the standard semantics generates a whole class
of alternatives, then the second postulate has only one alternative:

(VI) Interpretants of linguistic expressions are their senses, but not their denotata.

Both of these alternatives are not equal: the postulate (VI) is poorer for the conse-
quences than postulate (I), since linguistic expressions as well as senses may play role
of denotata (so far as the category of denotatum is relative), meanwhile the category
of sense is absolute. The most natural technique for empirical descriptions, in partic-
ular for descriptions that contain empty names, is based on the postulate (VI). This is



54 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

conditioned by the point that if the postulate (VI) is accepted, then existence does not
become a quantifier but transforms into a predicate speaking about particular individ-
uals. If we denote the latter by ‘x ≈ E’, the proposition “Julius Caesar exists” could
be written down as ‘c ≈E’, where c is “Julius Caesar”, but “not every town exists” as
‘¬∀t2(t2 ≈ E)’, where t is function-property “town”. At the same time existential
quantifier will change from existential state into partial: being connected with him
will mean existence no more.

Let us call semantics containing the postulate (II) denotational semantics or d-
semantics, and semantics containing the postulate (VI) — sense semantics or s-
semantics. So, let us use superscripts ‘d’ and ‘s’ in notation of calculi and theirs
axioms for the sake of indicating that fact what kind of semantics lays in the basis of
them (index ‘d’ has used in previous section just in this sense). If calculus contains
individual notations, let us use subscript ‘I’ in it’s symbolism. Predicate calculi the
author denotes by letters ‘PF’ (what meaning: “propositional function”), and func-
tion calculi — by letters ‘IF’ (so far as it goes about the functions of individuals);
superscript after ‘F’ means logic’s order in the sense of theory of types.

Calculi with sense semantics from classes 1–3 and 5–7, containing notations for
the predicate of existence, have the following additional axiom:

(exs13) f1 ≈ E → ∃h2(h2 ≈ f1),

from which, in particular, the next theorem can be derived:

f1 ≈ E → ∃f2(f2 ≈ E);

(note that in s-semantics of the classes 1–3 formulas ‘∃f2(f2 ≈ f1)’ and
‘∃f2(f2≈ E)’ are mutually independent, in s-semantics of the class 4 they both
are identically false, and in s-semantics of the classes 5–7 the second formula is logi-
cally stronger than the first one). If we remove the predicate of existence and an axiom
of type (ex) from any calculus under discussion, we obtain the system of logic without
existential presuppositions.

6. Notes on model theory

Rejection of the standard semantics leads to changes in model theory. First of
all, we want signature maps σ : E → M be completely defined (here E is the set of
all well-formed expressions of a given language L, and M is the domain of a given
model M). If we reject postulate (V), then E may contain empty names, so we need
to introduce a fictional analougue of interpretant for every such name. Let us call
such nonentities semantic nulls; by N denote set of semantic nulls, by A denote set of
“ordinary” interpretants; then be M = A∪N, A∩N = ∅. Unlike the unique Martin’s
empty individual semantic nulls can be any number. Indeed, putting semantic nulls is
necessary if we want to describe cases such as discussed above in section 2, where a
and b on the second model are fictions, although a 6= b. It should be emphasized
that the idea of semantic nulls is not a hypothesis ad hoc, but occurs naturally within
the theory of semantic triangle. It will not be discussed here this time.



Semantic presuppositions in logical syntax 55

Further, a model M for every calculus C has the single domain M only if C contains
individual notations as, for example, calculi Id1

I F1 and ISF1 do. In this case individual
variables set a total class of individuals, i.e. universe; its presence is significant be-
cause all the functional terms behave as variables of different sorts (a sort determined
by a function constructing a term), so every term has in model the corresponding set
of individuals. If calculus C doesn’t contain individual notations, every model M of
C has not single domain but the set of domains. As we know, in predicate logic many-
sorted calculi are trivially reducible to single-sorted ones; in function logic if calculus
doesn’t contain individual notations, such reducibility is impossible. Thus function
calculi without individual notations (for example, Id1F1) are calculi with irreducible
sorts. Models for such calculi are not relational systems but have more general form

M =< {Mi}, {Rj} >i∈I,j∈J ,

where I , J are arbitrary sets of indices. Relations Rj are interpretations for func-
tion expressions ‘f ’, i.e. if a signature map has a form σ : E → Mi, pred-
icate (10) corresponds to function f , and σ(g0) = M0, . . . , σ(gn) = Mn, then
σ(f(g2

1 , . . . , g
2
n)) = R ⊆ M1 × . . .×Mn ×M0; σ(f i) ∈ M0 for all i.

In s-semantics, if we introduce the predicate of existence, we have to take pairs
< Mi, M◦i > instead of single sets Mi, where Mi are sets of senses (and, possible, se-
mantic nulls-pseudo senses corresponding to them), M◦i are sets of denotata (and, pos-
sible, semantic nulls-nonentities corresponding to them; in this case M◦i = A◦i ∪ N◦i ,
A◦i ∩ N◦i = ∅). For the sake of interpreting existence formulas we need to introduce
partial maps si : Mi → M◦i ; if we assume the postulate (V), then every si is com-
pletely defined on Mi; if we reject (V), then every si is completely defined on Ai and
completely undefined on Ni. Models of calculi with semantics under discussion have
a form of the following mathematical structures:

M =< {Mi}, {M◦i }, {Rj} >i∈I,j∈J ,

where R defined as above.

7. Summary

There are two implicit semantic postulates (I) i (II), which form the standard se-
mantics, as it was called in this paper; they underlie modern predicate logic. Contexts
that are not satisfactorily described in the standard semantics occur in logical appli-
cations from time to time. A striking example of semantically non-standard objects
are descriptions, for which we still have no satisfactory theory, as all theorists have
tried to build it based just on the (implicitly assumed) standard semantics. However,
the possibility to build the predicate syntax based on non-standard semantics is not
currently confirmed. The author is inclined to believe that the standard semantics
implicitly underlies the categorical distinction between individual and predicate, so
predicate languages as such are not semantically neutral.

At the same time there is a semantically neutral alternative for predicate lan-
guages — function languages. These new languages are always built on the basis



56 JANCL. Volume 22 – No. 1/2012. Uses of non-classical logic: foundational issues

of explicitly specified semantics, and a formal function language could be constructed
for each of semantics. Metatheory of such languages — syntax as well as model the-
ory — is generalization of metatheory of predicate languages in the case of arbitrary
semantics.


